Nearest shrunken centroids via alternative genewise shrinkages
نویسندگان
چکیده
Nearest shrunken centroids (NSC) is a popular classification method for microarray data. NSC calculates centroids for each class and "shrinks" the centroids toward 0 using soft thresholding. Future observations are then assigned to the class with the minimum distance between the observation and the (shrunken) centroid. Under certain conditions the soft shrinkage used by NSC is equivalent to a LASSO penalty. However, this penalty can produce biased estimates when the true coefficients are large. In addition, NSC ignores the fact that multiple measures of the same gene are likely to be related to one another. We consider several alternative genewise shrinkage methods to address the aforementioned shortcomings of NSC. Three alternative penalties were considered: the smoothly clipped absolute deviation (SCAD), the adaptive LASSO (ADA), and the minimax concave penalty (MCP). We also showed that NSC can be performed in a genewise manner. Classification methods were derived for each alternative shrinkage method or alternative genewise penalty, and the performance of each new classification method was compared with that of conventional NSC on several simulated and real microarray data sets. Moreover, we applied the geometric mean approach for the alternative penalty functions. In general the alternative (genewise) penalties required fewer genes than NSC. The geometric mean of the class-specific prediction accuracies was improved, as well as the overall predictive accuracy in some cases. These results indicate that these alternative penalties should be considered when using NSC.
منابع مشابه
Nearest Shrunken Centroid as Feature Selection of Microarray Data
The nearest shrunken centroid classifier uses shrunken centroids as prototypes for each class and test samples are classified to belong to the class whose shrunken centroid is nearest to it. In our study, the nearest shrunken centroid classifier was used simply to select important genes prior to classification. Random Forest, a decision tree based classification algorithm, is chosen as a classi...
متن کاملClass prediction by nearest shrunken centroids,with applications to DNA microarrays
We propose a new method for class prediction in DNA microarray studies, based on an enhancement of the nearest prototype classi er. Our technique uses \shrunken" centroids as prototypes for each class and identi es the subsets of the genes that best characterize each class. The method is general, and can be used in other high-dimensional classi cation problems. The method is illustrated on data...
متن کاملContext Aware Group Nearest Shrunken Centroids in Large-Scale Genomic Studies
Abstract Recent genomic studies have identified genes related to specific phenotypes. In addition to marginal association analysis for individual genes, analyzing gene pathways (functionally related sets of genes) may yield additional valuable insights. We have devised an approach to phenotype classification from gene expression profiling. Our method named “group Nearest Shrunken Centroids (gNS...
متن کاملImproved centroids estimation for the nearest shrunken centroid classifier
MOTIVATION The nearest shrunken centroid (NSC) method has been successfully applied in many DNA-microarray classification problems. The NSC uses 'shrunken' centroids as prototypes for each class and identifies subsets of genes that best characterize each class. Classification is then made to the nearest (shrunken) centroid. The NSC is very easy to implement and very easy to interpret, however, ...
متن کاملDiagnosis of multiple cancer types by shrunken centroids of gene expression.
We have devised an approach to cancer class prediction from gene expression profiling, based on an enhancement of the simple nearest prototype (centroid) classifier. We shrink the prototypes and hence obtain a classifier that is often more accurate than competing methods. Our method of "nearest shrunken centroids" identifies subsets of genes that best characterize each class. The technique is g...
متن کامل